Finite Math - J-term 2017 Lecture Notes - 1/4/2017

Homework

• Section 3.1 - 9, 11, 15, 18, 20, 22, 24, 26, 34, 50, 55, 58, 71, 80, 81

Section 2.6 - Logarithmic Functions

Example 1. The isotope carbon-14 has a half-life (the time it takes for the isotope to decay to half of its original mass) of 5730 years.

- (a) At what rate does carbon-14 decay?
- (b) How long would it take for 90% of a chunk of carbon-14 to decay?

Solution.

(a) Suppose we have an initial mass of M_0 . After half of it decays, the mass will be $\frac{M_0}{2}$ and this happens after t = 5730 years has elapsed. Plugging all this into our model, we get

$$\frac{M_0}{2} = M_0 e^{r(5730)} \iff \frac{1}{2} = e^{5730r}$$

Applying the natural log to each side gives

$$\ln \frac{1}{2} = \ln e^{5730i}$$

Using properties of logarithms, we have

$$\ln\frac{1}{2} = \ln 2^{-1} = -\ln 2$$

and

$$\ln e^{5730r} = 5730r \ln e = 5730r$$

so that

 $-\ln 2 = 5730r.$

Solving for r, we get

$$r = -\frac{\ln 2}{5730} \approx -0.00012$$

This means that carbon-14 decays at a rate of 0.12% per year.

(b) If the mass of M_0 loses 90% of its mass, we're looking for the time it takes for only $0.1M_0$ to remain. So,

$$0.1M_0 = M_0 e^{-0.00012t}$$

and canceling the M_0 's gives

$$0.1 = e^{-0.00012t}.$$

Hit both sides of this with \ln to get

$$\ln 0.1 = \ln e^{-0.00012t} = -0.00012t.$$

Solve for t

$$t = -\frac{\ln 0.1}{0.00012} \approx 19,188.21.$$

So, it would take about 12,188.21 years for 90% of the original mass to decay.

Section 3.1 - Simple Interest

Suppose you make a deposit or investment of P dollars or you take out a loan of P dollars. The amount P is called the *principal*.

All of these things have an *interest rate* attached to them, essentially rent on the money, which is paid as *interest*.

Simple Interest. Simple interest is computed as

I = Prt

where I = interest, P = principal, $r = \text{annual simple interest rate (written as a decimal), and <math>t = \text{time in years.}$

Example 2. Suppose you deposit \$2,000 into a savings account with an annual simple interest rate of 6%. How much interest will accrue after 6 months?

Solution. 6 months is 0.5 years, so t = 0.5. The interest is 6%, so r = 0.06. The principal is P = 2000. Plug all this is to get

$$I = 2000(0.06)(0.5) = 60.$$

So, \$60 would have accrued after 6 months.

Future Value. Often, we might be more curious about how much will be in the account or how much will be owed on the loan after a certain period. This amount is called the *future value*. Another name for principal is *present value*. It is found by simply adding the original investment/loan amount to the interest accrued.

Definition 1 (Future Value).

$$A = P + I = P + Prt$$

and in a simplified form

A = P(1 + rt)

where A =future value, P =principal/present value, r =annual simple interest rate, t =time in years.

Example 3. Suppose you take out a \$10,000 loan at a simple annual interest rate of 3.2%. How much would be due on the loan after 10 months?

Solution. Principal
$$P = 10000$$

interest rate $r = 0.032$
 $10 \text{ months} = \frac{10}{12} \text{ years} = \frac{5}{6} \text{ years, so } t = \frac{5}{6} \text{ The future value is then}$
 $A = 10000 \left(1 + (0.032) \left(\frac{5}{6} \right) \right)$
 $\approx 10000(1.027) = \$10, 266.67$

Example 4. You make an investment of \$3,000 at an annual rate of 4.5%. What will be the value of your investment after 30 days? (Assume there are 360 days in a year.)

Solution. \$3,011.25

We can also use this formula to predict what interest rate we need or how much principal to take out/deposit.

Example 5. You're looking to invest \$5,000 and make \$1,000 in interest after 2 years. What annual rate on your investment will you need to accomplish this?

Solution. P = 5000 and I = 1000, so the future value is A = 6000. The time is t = 2, so plugging all this into the formula gives

$$6000 = 5000(1 + r(2))$$

and we need to solve for r.

$$6000 = 5000(1+2r) = 5000 + 10000r \implies 1000 = 10000r \implies r = \frac{1000}{10000} = 0.1$$

So we would need an annual rate of 10% to make \$1,000 in interest after 2 years. (We actually could have just used the formula for interest, I = Prt, to solve this problem.)

Example 6. You invest \$4,000 at an annual rate of 3.9%. How long will it take for the investment to be worth \$5,000? Give your answer in years, correct to 2 decimal places.

Solution. 6.41 years

One often uses a brokerage firm when making investments, many of which charge you a fee based on the transaction amount (principle) when both buying AND selling stocks.

Example 7. Suppose a brokerage firm uses the following commission schedule

Principal	Commission	
Under \$3,000	\$25+1.8% of principal	
\$3,000 - \$10,000	37+1.4% of principal	
Over \$10,000	\$107+0.7% of principal	

An investor purchases 450 shares of a stock at \$21.40 per share, keeps the stock for 26 weeks, then sells the stock for \$24.60 per share. What was the annual interest rate earned on the investment?

Solution. To purchase 450 shares will cost \$21.40(450) = \$9,630. This falls into the second fee range of the commission schedule, so the transaction fee will be

37 + 0.014(9630) = 171.82.

Thus, the total initial investment is

9,630 + 171.82 = 9,801.82.

Next, the investor sells the stock for

$$24.60(450) = 11,070$$

This falls into the third fee range on the schedule, so the commission is

107 + 0.007(11,070) = 184.49.

Thus, the net return on the investment is

11,070 - 184.49 = 10,885.51.

Now, using the total investment as the principal and the net return as the future value, we can use the future value formula to figure out the annual interest rate earned. P = 9801.82, A = 10885.51, the time elapsed was 26 weeks, and there are 52 weeks in a year, so $t = \frac{26}{52} = 0.5$.

$$10885.51 = 9801.82(1+0.5r) = 9801.82 + 4900.91r \implies 1083.69 = 4900.91r \implies r = \frac{1083.69}{4900.91} \approx 0.22112$$

So the interest rate earned was 22.112%.

Example 8. Suppose a brokerage firm uses the following commission schedule

Principal	Commission
Under \$3,000	\$32+1.8% of principal
\$3,000 - \$10,000	56+1% of principal
Over \$10,000	106+0.5% of principal

An investor purchases 75 shares of a stock at \$37.90 per share, keeps the stock for 150 days, then sells the stock for \$41.20 per share. What was the annual interest rate earned on the investment? (Again, assume a 360-day year.)

Solution. 6.352%

Average Daily Balance. A common method for calculating interest on a credit card is to use the *average daily balance method*. As the name suggests, the average daily balance is computed, then the interest is computed on that.

Example 9. A credit card has an annual interest rate of 19.99% and interest is calculated using the average daily balance method. If the starting balance of a 30-day billing cycle is \$523.18 and purchases of \$147.98 and \$36.27 are posted on days 12 and 25, respectively, and a payment of \$200 is credited on day 17, what will be the balance on the card at the start of the next billing cycle?

Solution. We must figure out what the balance is on each day of the month. At the end of day 1, the balance is \$523.18. The first transaction happens on day 12, which is a purchase of \$147.98, making the balance \$671.16. The next transaction is on day 17, a payment of \$200, making the balance \$471.16. The next, and final, transaction is on day 25 which is a purchase of \$36.27, making the balance \$507.43. It helps to make a chart of this data

Day 1-11:	\$523.18	$(11 \ days)$
Day 12-16:	\$671.16	(5 days)
Day 17-24:	\$471.16	$(8 \ days)$
Day 25-30:	\$507.43	$(6 \ days)$

To find the average daily balance, we can take the sum of the balance at the end of each day, then divide by the number of days.

$$SUM = 11(523.18) + 5(671.61) + 8(471.16) + 6(507.43) = $15,926.89$$

Dividing this number by 30 gives the average daily balance

$$ADB = \frac{SUM}{30} = \$530.90.$$

We can use the formula for interest to figure out the interest incurred (assuming 360 days in a year), $t = \frac{30}{360} = \frac{1}{12}$

$$I = Prt = (530.90)(0.1999)\left(\frac{1}{12}\right) = \$8.84$$

To find the balance at the start of the next billing cycle, we add this interest to the remaining balance at the end of the last cycle:

New Balance =
$$\underbrace{\$507.43}_{Day \ 30 \ balance} + \underbrace{\$8.84}_{Interest} = \$516.27$$

Example 10. A credit card has an annual interest rate of 19.99% and interest is calculated using the average daily balance method. If the starting balance of a 28-day billing cycle is \$696.21 and purchases of \$25.59, \$19.95, and \$97.26 are posted on days 6, 13, and 25, respectively, and a payment of \$140 is credited on day 8, what will be the balance on the card at the start of the next billing cycle?

Solution. \$648.14